What is an EUTxO blockchain?

LFCS seminar series, Edinburgh Informatics

Murdoch J. Gabbay

23 June 2020


http://www.gabbay.org.uk

Thanks

Thanks to Ohad Kammar for the invitation to speak.

This talk is based on joint work with Lars Briinjes.



Implementation

What follows has been implemented in Haskell using the Nominal
Datatypes Package:

® Code at: tinyurl.com/nomeutxo
® Package at: tinyurl.com/nominaldata

® Fetch source: git clone https://github.com/
bellissimogiorno/nominal.git

(Can you run stack in repl.it? Please tell me how.)


tinyurl.com/nomeutxo
tinyurl.com/nominaldata
repl.it

Call these equations idealised EUTxO, and a solution
a model or an algebra of chunks

Input = A X «
Validator C pow(Transaction)
Output = A x Validator
Transaction C [Input] x [Output]

Chunk C [Transaction]
Blockchain = {ch € Chunk | utxi(ch) = o'}

Above, [-] means ‘list of -', as per Haskell notation.

You might stare at the ‘Blockchain’ type, but you should also pay
attention to the ‘Chunk’ type. More on that later.

Warning: this figure elides some details. That's OK.



Base types: « and A

Input = A X «

Validator C pow(Transaction)
Output = A x Validator
Transaction C [Input] x [Output]
Chunk C [Transaction]

® « is a base data type for our blockchain. Assuming sufficient
Godel encoding & disregarding efficiency, we could take @ = N.

® A is a countably infinite set of location IDs. Each Input will get
a unique ID; as will each Output.
Atoms are Fraenkel-Mostowski style atoms, as per nominal
techniques (relevant to reading the Haskell implementation).



Input, Output, Validator, Transaction

Input = A X «

Validator C pow(Transaction)
Output = A x Validator
Transaction C [Input] x [Output]
Chunk C [Transaction]

An input is an «, located at some A-position.

A output is a validator, located at some A-position.

A validator specifies a set of ‘valid transactions’. We don’t take the
full powerset — e.g. we expect validity to be computable (this also
avoids cardinality issues).

A transaction is a list of inputs, and a list of outputs. Also subject
to validity constraints (more on this later).



Chunk

Input = A X «
Output C A x pow([Input] x [Output])
Chunk C [[Input]x[Output] ]

A Chunk is a transaction-list, subject to validity constraints:

® Each input in a chunk must have a unique position amongst
inputs, likewise for outputs.
e |f an output shares a position with an input then:
® the pair must be unique with that position; and
® occur in the order output-input, so a later input points to at
most one earlier output; and
® an output pointed to must validate the pointing input’s
transaction, with that input moved to the list head.

We can a-rename positions of output-input pairs (see paper).



UTxls and UTxOs

Chunks are similar to a datatype of abstract syntax with binding.
They have notions of:

e dangling / free / unspent inputs (those inputs not bound to
some earlier output), and

® dangling / free / unspent outputs (those outputs not bound to
some later input), and therefore

® a-equivalence on positions of bound output-input pairs.

Call an unspent input a UTx| and an unspent output a UTxO.

A blockchain is a chunk with no free inputs (left-closed):

Chunk C [Transaction]
Blockchain = {ch € Chunk | utxi(ch) = &}

Chunks have nice properties:



The algebra of chunks
Chunks form a partially-ordered partial monoid.

® The unit is the empty chunk (the chunk consisting of no
transactions).

e Composition is list concatenation, subject to validity conditions
(no name-clash with positions, no failed validators).
We may create a-bindings: UTxOs dangling right from the left
chunk may bind to UTxIs dangling left from the right chunk.

e This partial monoid is partially-ordered by sublist inclusion. It
is a fact that validity is preserved by taking sublists.

Operationally as well as mathematically, chunks can be nicer to
work with than blockchains.

I discovered this from the Haskell implementation: to be elegant,

the code wanted chunks and a partial monoid structure. The maths
followed.



In these slides:

e \We consider the structural aspects of blockchain.
The challenge of securing these structures cryptographically, is
not considered. Yet, at least conceptually, we still provide a
clean abstraction to which the crypto side can attach.

e This talk is a mathematical abstraction. Practical
implementation is more complex, of course.
Yet, the type equations and their algebraic structure brings
clarity which | (at least) find helpful.

® Even with these elisions, our Haskell implementation

demonstrates that this idealisation still has operational content
and yields executable code.



What's original?

® The notion of (E)UTxO blockchain is established machinery
(Bitcoin; “The extended UTXO model”).

® The mathematical idealisation on Slide 4 is new.

® The focus on chunks, their partial monoid structure, and the
(minor, but explicit) idea of UTxIs, is new, so far as | am aware.

® Equating names of output-input pairs explicitly with
a-equivalence (like in syntax), and applying a nominal model
to their operational semantics (cf. the code), is new.


https://bitcoin.org/bitcoin.pdf
http://fc20.ifca.ai/wtsc/WTSC2020/WTSC20_paper_25.pdf

Let's use our maths to express some results

Notation 1. Let variables named ch range over Chunk.

Definition 2. Write fa(ch) for the free atoms of ch € Chunk. Thus,
fa(ch) = utxi(ch) U utxo(ch).

Definition 3. Write ch#tch’ when fa(ch) N fa(ch’) = @.

Remark 4. ch#ch’ is a strong orthogonality assertion. The inputs

and outputs of ch and ch’ cannot connect, and they can't
communicate or compete for UTxOs or UTxls of other chunks.



Let's use our maths to express some results

Notation 5. Write ch e ch’ when ch - ch’ is defined.

Lemma 6 (simple). ch#ch’ implies che ch’ A ch’ e ch.

Sketch proof: If they don’t share positions they can’t interact: there
can't be name-clash between them, and their validators can’t fail on
one another, because their validators can't be referenced, because
they don't know one another’s positions.

Lemma 7 (slightly harder). ch e ch’ A ch’ e ch implies ch#:ch’.
Sketch proof: If an input in ch’ points to an output in ch then
—(ch e ch’), because this would violate that an input must point to
an earlier output position. So they can't share positions.

We don't develop observational equivalence in these slides, but if we
did then using Lemmas 6 and 7 we would identify ch#ch’ with
commutativity. See also next Theorem:



More results

Theorem 8. Suppose ch e chy, ch e chy, and ch e chy e chy. Then
utxi(ch - chy) = utxi(ch - chy - chy) = chi#ch;

Technical as this may seem, it is an important purity result.

Consider the special case that UTxIs are @ (so: blockchains), and
ch is the current chain. Then if we can append ch; to the chain
now, and we can also append it later (after some chy attaches),
then the UTxOs that chy references are necessarily apart from those
referenced by inputs of ch;.

So ch, might cause ch; to fail to attach to ch, but if it doesn't then
it can’t interact with chy; cha might block ch; from attaching, but
has no effect on ch;'s outcome if successful.

More at http://gabbay.org.uk/papers.html#utxabs


http://gabbay.org.uk/papers.html#utxabs

A simple example: it counts!

Take o = N. (An even simpler possiblity is o = {x}, but | want
non-trivial validators).

We will now choose subsets:

Input = A x N
Validator C pow(Transaction)
Output = A x Validator
Transaction C [Input] x [Output]
Chunk C [Transaction]



A simple example: it counts!
We admit transactions Transaction C [Input] x [Output] of the form

SUCCi p pt = < [(P, i)], [(Pla Va/p’,i')] )

where valy = ([(p/,1")], ) — ' = i+1

for i € N and p, p’ € A distinct. That's a singleton input [(p, /)]
and a singleton output [(p’, valy i7)], where val validates a
transaction iff its input points to p’ and carries i+1. Thus:

Transaction = {succ;,pvp/ |ieN, p£p € A}.

Admit any chunk, if positions match up and validators are satisfied
(in particular, at most one UTxI and UTxO). So:

e Composition is list concatenation; and
e the unit is the empty chunk [].



A simple example: it counts!

Proposition 9. There is a homomorphism of partial monoids from
(Chunk, [],-) to (N, 0,+), given by mapping a chunk to its length as
a transaction-list:

® The empty chunk maps to 0.
e Composition — attaching an n-chunk to an n’-chunk — maps
to addition n+ n’.

Thus, our example counts; each transaction is visibly a ‘successor’
operation, subject to solving the puzzle of knowing the position of
the end UTxO of the left-hand n-chunk, and knowing its final value.
That's fine: we expect partiality and this is just part of the ‘crypto’
aspect of the model.

Note: Proposition 9 holds for any chunk system (not only this
example).



A simple example

The previous model doesn’t have any blockchains (left-closed
chunks), because we did not admit a genesis block (a transaction
without inputs).

| don't see this as a problem — what system doesn't allow users to
download partial blockchains nowadays? — but it's also easily fixed.
Admit zero transactions

0p = (1. [(p, (I(p; 1], _) = i=0)])

and admit a chunk provided it contains at most one zero
transaction.



A simple example

Is this a simple example? Yes! But | propose that more complex
examples are, mathematically, just fancy-pants versions of this one.

That is not to say that blockchains are simple, nor that we have a
accounted for all complexity and extensions; quite the contrary.

But what we have done is simplify complexity, abstract detail, and
obtain a clear model to guide us.



Example: restoring some complexity, to see how it's done

In practice, Validator C pow(Transaction) is supplied not as a set
but as the action of a script — in the literature, validators are taken
to be scripts, which makes perfect operational sense.

A script is propagated along outputs and should not necessarily
change with every transaction. To reflect this in the maths we just
require an additional type parameter 5:

Input = A X «
Validator C pow(f x Transaction)
Output = A x 8 x Validator
Transaction C [Input] x [Output]
Chunk C [Transaction]

The S in Output tells us which part of v € Validator (thought of as
a script parameterised over a (3-value) to reference.



Conclusions

We've seen a simple, abstract presentation of the (E)UTxO model
and sketched its properties.

We noted that chunks have algebraic properties, and form a
partially-ordered partial monoid.

Name-binding corresponds to linking UTxOs to UTxls and this
connection is non-superficial in the sense that notions of support
and apartness # correspond to commutativity and equivalence
properties of chunks.

There's more to say, that | haven't covered.



Conclusions

A paper is here:
http://gabbay.org.uk/papers.html#utxabs
with more to follow.

The package is here:
https://github.com/bellissimogiorno/nominal

An example of future work would be to expand on the algebraic
treatment of chunks, and hopefully extract a sound and complete
axiomatisation of our type equations as an algebraic structure — i.e.
a univeral algebra of chunks.

Thanks for listening.


http://gabbay.org.uk/papers.html#utxabs
https://github.com/bellissimogiorno/nominal

