a-logic with arrows

Murdoch J. Gabbay! Michael J. Gabbay?

Abstract

We present an extension of first-order predicate logic with a novel predicate ‘at ¢’ meaning intuitively “this
term is a variable symbol”. We give simple sequent proof-rules for it, we demonstrate cut-elimination for
the resulting logic, and we give a semantics for which the logic is sound and complete.

Because we can now make assertions about what would normally be considered an intensional property of
a term (being a variable symbol) we can now express inside the logic, properties of its terms and predicates
which would normally be external to the logic. We give axiomatisations in a-logic, including of the lambda-
calculus, and discuss what relevance this might have to logic programming.

1 Introduction

a-logic extends classical First-Order Logic (FOL) with a predicate at ¢ such that if
t is not a variable symbol then at ¢ is contradictory. We read att as ‘¢ is a variable
symbol’.

Let a, b, ¢, and so on, be variable symbols. A simple inductive definition of
substitution on abstract syntax without binding is:

ala:=t]| =t azb=bla:=t]=b f(ai,...,an)[a:=t] = f(a1]a:=t], ..., apa:=t])

Here f is a term-former and we write s = ¢ for ‘s and ¢ are identical terms’, and s # ¢
for ‘s and t are syntactically different terms’. For the first clause it is important
that a is a variable symbol, and for the second clause it is important that both a and
b are variable symbols. The third clause, as stated, ignores capture avoidance (if f
is a binding term former) we assume that the reader is familiar with appropriate
additional clauses/conventions to accommodate this.

We find that at gives just enough power to axiomatise the A-calculus. We
investigate the A-calculus example in detail but by the end of the paper it should
seem plausible that a-logic has broader applications.

So what is new? Plenty of other systems can express the syntax and reductions
of the A\-terms. To our knowledge a-logic is unique in that it has this expressivity

1 http://www.gabbay.org.uk

2 michael.gabbay(at)kcl.ac.uk

http://www.gabbay.org.uk

GABBAY AND (GABBAY

while still being a first-order (that is, S-reduction is not primitive) logic such that:
variables of the object theory are variables of the logic and A and application are
just binary term-formers taking pairs of terms and giving terms.

We would like to say that again, but we need some (informal) terminology.
Say a map is a shallow embedding from one system (logic or calculus, say) to
another, when variables map to variables (with a deep embedding variables map to
constants) [2,29]; a map is compositional when the interpretation of an expression
can be obtained directly by composing the interpretation of its parts in a syntax-
directed manner. Say a system is first-order when its language of terms does not
already contain S-reduction.

Our application of a-logic is unique in that it is to our knowledge the only
compositional shallow embedding of the A-calculus into a first-order logic.

The reader need not care about logic or about the A-calculus. However, these
are paradigmatic and they are the basis of logic and functional programming re-
spectively. It has not previously been possible to directly (in the sense just given)
map one to the other. We discuss potential applications and related work in the
Conclusions.

Outline of the paper. a-logic is a straightforward classical first-order logic with a
Boolean semantics. We define syntax in Subsection 2.2 and sequent rules in Subsec-
tion 2.3. We axiomatise substitution in Subsection 3.1, then the untyped A-calculus
in Subsection 3.2, and finally we briefly consider other examples. Section 4 proves
cut-elimination. Section 5 constructs a class of models and proves soundness and
completeness. In the Conclusions we recap on related work, summarise, and men-
tion possible future work. In Section 6 we build a concrete semantics for the axioms
of the A-calculus, incidentally proving consistency of the main axiomatisations in
this paper.

The ‘a’ in ‘a-logic’ refers to the fact that the logic is for making statements about
its variable symbols a, b, c. Any resemblance to an indefinite article is coincidental.

2 a-logic
2.1 The aim of a-logic

Ultimately a-logic will be sensitive to its own syntax in addition to possessing a
familiar denotational model theory. Truth in a model will therefore depend not
only on the denotations of predicates, but also on their syntactic structure. For
example the predicate ‘z is a variable’ will be true in a model not simply because
of the denotation of ‘x’ but also because ‘x’ is a variable. Not every predicate is
sensitive to term complexity in this way, some ignore it completely, others only
partially. For example the predicate ‘t; is a simplification of to’, if true, ought to
remain true if £, is replaced only by simpler terms with the same denotation, and
if ¢4 is replaced only by more complex terms with the same denotation. To capture
these intuitions formally, we assign to predicates an arity which indicates how it
reacts to variation in the syntactic properties of its terms.

The syntactic property we are most interested in a-logic recognising is that
of ‘being a variable’. The model theory of a-logic shall contain special elements,

2

GABBAY AND (GABBAY

call them atoms, which represent variables in the denotation. But the variables of
our syntax should still range over the whole domain of the model. So we use the
predicate att, which means that t is a variable symbol and is interpreted as and
atom in the model. We can now extend our use of the term ‘atom’ to apply to
variable symbols as well: a variable symbol a is an atom when we know that at a.

2.2 Terms, directions, predicates

Assume a countably infinite set a,b,c € A of variable symbols and some untyped
language of abstract syntax trees. Write s, ¢, for arbitrary terms, built inductively
from variable symbols and some countable set of term-formers of fixed arity ap-
plied to terms. Write t[a:=t] for the usual substitution on terms. We may write
a € tif a occurs in ¢t and a € t otherwise. >

We assume three directions T up, | down, and O up and down. Where
necessary, d will vary over directions. Assume some countable set of predicate
constant symbols p,q,r... € P, each with an arity § = (dy,...,d,) which is a
sentence in {1,], O}* (thus, a possibly empty list of directions). We write p : ¢ for
‘D has arity §°. When ¢§ has length n and some list of terms also has length n,
we say that list has length appropriate to §. We assume distinguished predicate
constants:

(i) We call ~ : (1,]) aequality (pronounced as ‘ayquality’).
(ii) We call at : (]) atom (‘is an atom’).
(iii) We call L : () false or contradiction.

We may write ts as shorthand for a list of terms ¢4, ..., t,,. Write p(ts) for a predicate
constant applied to a list of terms of length appropriate to its arity.

Consider p : (dy,...,d,) and a list of terms (¢1,...,t,). When for all i such that
a € t;, it is the case that d; € {1, 0}, we say a occurs up in p(ts) and we write
aTp(ts). Similarly when for all i such that a € t; we have d; € {], O}, write alp(ts).
When for all ¢ such that a € t; we have d; = O, write aOp(ts).

The intuition of ~» is a formalisation of a reduction relation (like S-reduction,
for example). The intuition of alp(ts) is a ‘subject reduction’ property, that if s ~ ¢
then p(ts)[a:=s] implies p(ts)[a:=t]. If alp(ts) and s ~> ¢ then p(ts)[a:=t] implies
p(ts)la:=s]. Finally, if aOp(ts) and s ~ t then p(ts)[a:=s] if and only if p(ts)[a:=t].
More on this in Subsection 2.4.

Intuitively, att is true when ¢ is a variable symbol. The arity (1,]) of ~ is
consistent with its intuition. at must have arity (J) both to avoid inconsistencies
(we see this later) and to remain true to the intuition.*

There is no interaction (yet) between directions and the terms, so p(ts) is always
well-formed so long as ts has the right length. Predicates are generated by the
grammar

P:=p(ts)| L|P D P|Va.P.

3 If the language of terms admits binding then a € t when a occurs free in ¢.

4 For example, if ~» models a literal reduction relation then we can interpret ¢ ~» a as expressing that some
complex term ¢ reduces to an atom a. In that case we had better not allow the substitution of ¢ for a in a
(true) sentence such as at a, for that would yield the (potentially false) sentence att.

3

GABBAY AND (GABBAY

(ax) DPF@A o TEPA T.QFA
ILPEPA T'P>Q,A I,POQFA

I'FPA [agdT, A T, Pla:=t] - A

(VR) —— (VL)
I'FVa.P A I''Va.P+ A

IHPA T,PEA
A T — (L
TN (Cut) [1yat

FatatF A [agT,A] I'Fatt,A [t not a variable]
(atL) (atR)
kA I'EA

_____ _(=~R
Fl—twt,A()

s)a:=t'],A [a s I'Ep(ts)[a:=t],A Ja s
FFp?)[v, [ip@)]OHLU é@)[t] [T?@)]QﬁLﬁ
Lt~ tF p(ts)a:=t], A Lt~ t - pts)|a:=t'], A

Fig. 1. Derivation rules of a-logic with aequality

Va.P is binding, nothing else is. As is usual we write Va,b,....P as shorthand
for Ya.Vb.... P. We equate predicates up to a-equivalence; we will not talk about
‘occurring free’ or ‘occurring bound’. Consistent with our convention for terms we
write P = @ for ‘P and @ are identical predicates up to a-equivalence’.

Write VP for the wvariables occurring in P, defined by: Vp(ti,..., t,) =
UVt, V(P> Q)=VPUVQ, and V(Vb.P) = VP\{b}. We may write a € P for
a € VP, weread it ‘a occurs in P’. Then a ¢ P means ‘a does not occur in P’.

Write Pla:=s] for P with every instance of the variable a replaced by the term
s in the usual, capture-avoiding, manner.

2.3 Contexts and judgements

A (logical) contextT is a finite set of predicates. We write a € T' when a € P for
some P € I', and a ¢ I" otherwise.

A judgement is a pair of contexts which we write I' - A. When a context is on
the right-hand side of a judgement we call it a cocontext. The valid or derivable
judgements are inductively defined by the rules in Figure 1.

In Figure 1 a and b are distinct variable symbols; bound by V, free otherwise
(note that the a in (at L) must be a variable symbol). Formulae in square brackets
are side-conditions whose satisfaction can be decided just by examining syntax.
(at L) is not mis-typed. It eliminates a variable.

Call T' - A a theorem when a derivation exists concluding in ' = A. If ' = ()
write THFAasHFA IfA=0 writeTHFAasT .

A subset of the logic is classical predicate logic, so we use standard sugar such
as writing —P for P D 1, PV Q for (-P) D @, Ja.P for =(Va.—P), P A Q for
=(P D (—Q)), and in general we shall use other well-known shorthands for classical

4

GABBAY AND (GABBAY

equivalences.

2.4 Comments on atoms

(at L) states that atoms exist, and (at R) states that we cannot indirectly describe
them (that is, by means of a complex term).
As can be seen from this derivation, assuming ¢ is not a variable,

(Ax)
I'att att, A
(atR)
Iatt- A

(atR) is like (LL); ‘if ¢ is a term then it is not a variable’. at (a,a) - is a theorem
and can be derived by (Ax) followed by (atR). (We assume a pair term-former
(-,-).) There is no rule I" - ata, A. It would break Lemma 4.1 (the substitution
lemma) which underlies the essential case of ¥V and which formalises the intuition
‘variable symbols represent unknown terms’.

We cannot conclude at a just because a is a variable symbol! at a in I" represents
a promise that a will never be instantiated to a (non-variable) term. This explains
(at R) since there the promise has manifestly been broken, and also (at L) since
there a is fresh from I" and thus immune to any nasty things I' may do to it (such as
contain a = 0). We may call a variable symbol a of which we know at a an atom.

Define atP, alP, and aOP by:

aOP aOP atP alQ alP af@ aOP aOQ atP alP aO®OP
atP alP al(PDQ) af(PDQ) aO(PDQ) afVa.P alVa.P aOVa.P

Theorem 2.1 ~~ is transitive and reflexive; s ~>t, t ~»u bt s~ u and b s ~ s
are derivable.

Proof. The latter is simply an instance of (~~R), the former follows by this deriva-
tion (noting that al(s ~~ a)):

(Ax)
(~Li)

s~ th s~ ala:=t]

s~ bt~ u ks~ alai=ul

O

~» behaves like the transitive reflexive closure of a reduction/rewrite relation.
By Theorem 2.2 below if alP then P satisfies ‘subject reduction’; if P[a:=s] and
s~ t then Pla:=t]. But then in P D @ (where @) does not mention a) the direction
of the ‘subject reduction’ is reversed, thus we need af(P D @). Similar issues arise
with ~~ itself. For example if (a ~» t)[a:=s] and s’ ~» s then (a ~ t)[a:=s']. This is
why ~~ has arity (1,).

Theorem 2.2 The following two rules are derivable:

'+ Pla:=t'],A (alP) ' A, Pla:=t] (alP)

[t~ tk Pla:=t], A (-Ld) [t ~tk A, Pla:=t] (-L1)

GABBAY AND (GABBAY

Proof. It is not hard to check, by induction on P, that directions propagate point-
wise but get flipped if they are in negative position (the left-hand side of an impli-
cation) and that aOP precisely when afP and alP.

We now work by induction on P. The atomic case follows immediately from
(~L1), (~LJ) and the definition of al P in the case where P is atomic (see page 3).
The induction cases are routine. For example suppose P is (Q D R). We must show
that

(i) f al(Q@ D R) and T'F (Q D R)[a:=t']A then I',t/ ~» t F (Q D R)[a:=t], A
(ii) if af(@ D R) and '+ (Q D R)[a:=t], A then I',t/ ~ t F (Q D R)[a:=t'], A

The antecedent of case (i) can be only if we have aT@ and a|R, and the antecedent
for case (ii) can occur only if a]@ and afR.
For case (i) we sketch a derivation as follows:

(Ax) (Ax)
T, Qla:=t] F Qla:=t], A T, Rla:=t'] F Rla:=t'], A
Ind.Hyp., (~L1) Ind.Hyp.(~L])
It~ t,Qla:=t] F Qla:=t'], A T,t' ~ t, Rla:=t'] - Rla:=t], A
(oL)

It ~t,(Q D R)[a:=t'], Qla:=t] F R[a:=t], A

(OR)
It ~t(Q D R)a:=t'] - (Q D R)[a:=t],A

We can now derive I',t' ~» t b Pla:=t], A from the assumption that I' - (Q D
R)[a:=t'], A and (Cut).

The relevant derivation for case (ii) is easily obtained from the derivation above
by swapping ¢ with ¢’ and relabelling the applications of (~L%) and (~~LJ]) accord-
ingly. a

The standard derivation rules for equality are:®

I'F Pla:=t'],A
THt=tA -R) i (=L)
=t It =tk Pla:=t],A

If we make sure that aOP, then ~» behaves just like an equality — at least for that
a. Also, a-logic predicates can express a notion of equality:

Definition 2.3 Write t = u in a-logic as shorthand for ¢ ~» u A u ~~ t.
Theorem 2.4 (=R) and (=L) are derivable in a-logic.

Proof. If neither atp(ts) nor alp(ts) we view p(ts) in terms of two variables fresh
atoms a’ and a”, one occurring exclusively up in p(ts), the other occurring ex-
clusively down. That is, we view p(ts) as p/(ts)[a’:=a,a”:=a] where a’|p/(ts) and
a"tp(ts), and where a ¢ p/(ts). It is then easy to verify that with one use each of
(~ L?) and (~ LJ) we can obtain the effect of (=L). (=R) is easy. 0

5 A familiar alternative to (=L) is this:

T, Pla:=t'| F A
(=L)

It =t Pla:=t]F A

GABBAY AND (GABBAY

(= #) Ya,v.(a#v O Vb.(at b > v(a—b) ~ v))

(—aa) Va,v.(at a D v{a—a) ~ v)

(sat) Va,t(ata D alast) ~ t)

(—ren) Va,b,u,v.((at a A b#v) D v{a—b)(b—u) ~ v{a—u))

(—comm) Va,b,v,t,u.((atb A a#b A aftu) D v(a—t) (b—u) ~ v{b—u) (a—t(b—u)))

Fig. 2. a-logic axioms for substitution

(#aa) Va.(—a#a)
(#at) Va,t.(a#t D ata)
(# ~) Va,b.((ataAatb) D (a~ bV a#b))

Fig. 3. a-logic axioms for freshness

(Aref) Va,b,v.(at a A b#v D Aa.v = Ab.v(a—b))

(AB) Va,v,t.(ata D (Aa.v)t ~ v{a—t))

Fig. 4. a-logic axioms for a-equality and for S-reduction

So a-logic combines elements of computation, given by ~», of logic, given by the
evident logical apparatus, and of something quite unusual, given by at .

3 Expressivity

We are now ready to write down some axioms:
3.1 Substitution

Definition 3.1 Suppose a ternary term-former (). We usually write ()(s,u,t) as
s(u—t). Assume a binary predicate # : ({,]) freshness. Then an a-logic theory
of substitution is given by the axioms in Figure 2.

We intend # to express a notion of ‘not free in’. This notation and intuition
is inherited from nominal techniques [18], though the properties of # are here
expressed as axioms in a-logic, whereas they are built in as primitive to the nominal
framework. We intend () to express a notion of ‘capture-avoiding substitution for
atoms’; a related nominal treatment is also available [17].

Remark 3.2 Note, in Figure 3 that a#t implies ata. We use this for example
7

GABBAY AND (GABBAY

when we omit an assumption ata in a number of axioms, e.g. (—comm), but we
still give a the name ‘a’.

A remark on syntax is particularly important:

Remark 3.3 v(s—t) is valid syntax whether or not s is a variable symbol. () is
just a ternary term-former. () is distinct from substitution on terms v[a:=t]. For
example c[a:=b] = ¢ but ¢(arb) # ¢ and furthermore - ¢{a—b) ~~ ¢ is not derivable.

v[s:=t] is not well-defined unless s = a for some variable symbol a. v(s—t) is a
valid term always, but only if we have assumed at s can we prove anything useful
about v(s—t) from the axioms in Figure 2. However, assuming at s of s that is not
a variable symbol leads to immediate contradiction by (at R). Therefore in practise
we only have occasion to usefully write down terms such as t(a—u).

We can now give an answer to the question “why ~» not =?”. Assume the
axioms of Figure 2, except replacing ~» with = from Definition 2.3, which we proved
in Theorem 2.4 has the properties we expect of equality. For example axiom (—at)
becomes Va, t.(at a D a{a—t) = t). Call this set of axioms ¥’. Then:

Theorem 3.4 X'+ is deriwable. In words: “Y is inconsistent in a-logic”.

Proof. Note that all the axioms of ¥ are closed and that ¥’ ata - a{a—a) =
a is derivable using the replaced version of (—aa). Using (Cut) and (=L) also
Y ata b at (a{a—a)) is derivable and using (at R) we obtain ¥’ ata F. Finally
by (at L) we derive ¥/ . O

So at in a-logic interacts with equality, and seems to require it to be directional.

In Section 6 we build a nontrivial model for all the axioms of Figures 2, 3 and 4.
By a soundness result which we prove later in Theorem 6.7, this demonstrates that
any subset or weakening of these axioms is neither inconsistent nor trivial.

Remark 3.5 The axioms of Figure 3 interact to yield some further theorems of
substitution and freshness. For example, using (~ R) it follows that

bita,a ~ bF b~ b

and then using (#aa) we can derive that b#a b —=(a ~ b). Then using (# ~) we
can derive
at a,at b, b#a F a#b

so freshness is a symmetric relation when between atoms.

Remark 3.6 A corollary of Theorem 6.7 is that it is consistent to strengthen
(—comm) to

Va,b,v,t,u.((at b A a#b A a#tu) O via—t)(b—u) = v{b—u){a—t(b—u)))

This may be appropriate in some examples, for example such in the A-calculus of
Subsection 3.2.

Axiomatisations of substitution exist though we are aware of no authoritative
source. Two examples are Crabbé [10, p.2] and Salibra [23, p.6]. Crabbé assumes a

8

GABBAY AND (GABBAY

function symbol which we can identify with #; Salibra gives a more algebraic ax-
iomatisation but the domain must be a model of the A-calculus so he expresses a#s
(a is not free in s) by writing s as (Az.s)a. Salibra’s and Crabbé’s axiomatisations
are almost equivalent; the authors do not cite one another but the interested reader
can note that (Az.s)t in Salibra corresponds to s[a:=t] in Crabbé [10, Proposition
3.1]. We must remove Salibra’s axiom [, which is S-reduction. The first author
with Mathijssen has recently investigated an axiomatisation of substitution using
nominal algebra [16,17]. Nominal algebra makes more structure, such as freshness,
primitive to the logic; making a formal connection with a-logic is future work.

3.2 A-calculus

Definition 3.7 Assume the term-former substitution () and predicate constant
freshness # : ({,]) from Subsection 3.1. Also assume binary term-formers applica-
tion - and lambda \. Write -(¢',t) as t' - t. Write A(s,t) as As.t. An a-logic theory
of the A-calculus is given by the axioms in Figures 2, 3 and 4.

Note (as observed of () in Remark 3.3) that application and A are merely term
formers; As.t is a valid term for any s, but the axioms permit nothing of interest to
be derived about it, unless at s is also derivable.

We can add an axiom for extensionality to those of Figure 4:

Vb.Vs.atb O (Ab.s)b ~ s.

There are other interesting properties we might consider investigating in future
work. For example:

* A unary predicate symbol O with axiom Os < Va.at a D a#s. The intuition is
‘s is closed’.

* A predicate ‘the free atoms of s are precisely b’” axiomatised by (—=b#s) AVa.at a A
a # b D a#s.
e A predicate ‘the free atoms of s are at most b’ axiomatised by Va.ata Aa # b D

aFs.

These are in the spirit of suggestions already made for nominal rewriting in [11,
Subsection 9.2] though the technical details are very different.

The first author was instrumental in developing so-called Nominal techniques,
including Nominal Logic [22,14]. These have similar applications to a-logic and
they have a freshness predicate #. However they are inconsistent with the axiom
of choice; for example Nominal Logic is inconsistent with a unary term-former f
such that (fs)#s always. It seems that we can axiomatise such an f in a-logic, as
Vs.3b.fs ~» b A b#s. The use of ~~ helps to avoid contradictions and this might be
useful in some applications of nominal techniques.

4 Cut-elimination

In this section we prove that a-logic (without additional axioms and term formers
for substitution) satisfies Cut-Elimination. If I' = {Gy,..., Gy} write I'[a:=t] for

9

GABBAY AND (GABBAY

{Gi]a:=t], ..., Gpla:=t]}. Similarly for Afa:=t].
Call the total number of instances of derivation rules in a derivation, its depth.

Lemma 4.1 (Substitution Lemma) IfT"'+ A has a derivation 11, then I'[a:=t| -
Ala:=t] has a deriation lja:=t] that is no deeper than II.

Proof. By induction on the depth of derivations.
We consider some cases:

e The case of (atR). If v is not a variable in I' F atv, A then v[a:=t] is not a
variable in I'[a:=t] I at v[a:=t], A[a:=t] so substitution instances of instances of
(at R) are still instances of (at R).

e The case of (atL). Suppose the sequent I' = A is derived from the sequent
I'yatb - A by (atL). Then b is a variable symbol such that b ¢ I', A. We need
to show that I'[a:=t] F A[a:=t] is derivable.

By the inductive hypothesis, we have that T'[b:=V],at b[b:=b'] - Alb:=b] is
derivable, for any other variable ’. Choosing V' so that b’ & I", A, t it follows that
the sequent I',at b’ - A is derivable, and the derivation is no deeper.

By the inductive hypothesis again

[la:=t], (at b')[a:=t] - Ala:=t]
is derivable. Now, b’ was chosen so that (at b')[a:=t] = atd’. So we can use (at L)

to derive I'la:=t] F Ala:=t] as required.

* The rules for ~» are non-standard but it is not hard to verify that substitution
in a valid instance of a rule is still a valid instance, just as we would do for the
usual equality rules.

For example in the case of (~LJ]) if we have

I

Tk p(ts)b=t], A [bip(ts))
[, ~ t - p(ts)[b:=t], A

(L)

...then by induction hypothesis we have:

H[af:s]

Ca:=s| F p(ts)[b::t'[a:;s]], Ala:=s] [blp(ts)]
[[a:=s], (t' ~ t)[a:=s] I p(ts)[b:=t][a:=s]], A]a:=s]

(~LJ).

Other cases are routine.

Lemma 4.2 (Weakening) IfT'F A then I, T" F A A"

Proof. By induction on the derivation of I' - A. We may need to rename variables
generated by (at L), or (VR) to avoid clashes with variables in I or A’. For example
if the derivation ends with (Ax) then the weakened conclusion is itself derivable by

10

GABBAY AND (GABBAY

(Ax), if the derivation ends with (VR):
I

: ...then by the induc- H[af:c]
e 'p7 A tion hypothesis we :
TrvaPA (VR)™ have. .. [, IV F Pla:=c],A, A

where II[a:=c] is obtained using Lemma 4.1 by replacing a in II by some atom c

that does not occur in I', TV, A or A’. We know that II[a:=c| really is a derivation

because a is not free in I' or A. From this we can derive I, " Va.P, A, A’ by

an application of (VR) (recall from Subsection 2.2 that we equate predicates up to

a-equivalence). The remaining cases follow by familiar application of the induction

hypothesis. a
I'-PA T,PrA

For any instance of (Cut): (Cut) say its degree is the total
T+ A

number of instances of the symbols L, D,V in P; and say its rank is the depth of
the derivation of its conclusion.

Theorem 4.3 (Cut) is an admissible rule in the system without it.

Proof. By induction, lexicographically, on (d,r) where d is the degree and r is
the rank of the earliest cut, counting from the leaves of the derivation down to
the conclusion. The proof is standard for first-order logic with equality and uses
weakening, and the substitution lemma for the essential cases. (atL) and (atR)
have no essential case. Cuts are commuted in the usual way with the rules, including
(at L) and (at R), to lower their rank forming essential cases where they are reduced
to cuts of lower degree.

i, m L,
I : : :
: ata, I’ PEA — ata,’'FP,A atae',PFA
I'-PA I P-A (atL) (Cut)
)) at a, I'HA
(Cut) . (at L)
r-A r+A

Here we use Weakening (proved above) to extend II; to IT] by adding ata to the
premise of every sequent in II;. Since a € I'; A, P we can rename all terms in I so
that a does not occur at all in it, and then we can add at a without invalidating any
rule applications in II. The essential (and commutation) cases for the remaining
connectives are familiar, and with one exception the essential cases for ~~ are also

easy.
11
N m
————(~R) ————(~L})) ~ -
Tht~tA Dt~ tFA T-A

A
It is worth stating explicitly the problematic commutation case for aequality. This

is the case where an aequality rule applies to the cut formula itself. Suppose alp(ts)

11

GABBAY AND (GABBAY

and we have

1_:[/
I Ep(t):[A B
s)[a:=t], :
/ : (WL\L))
Dt~ tEp(ts)|a:=t], A I, p(ts)[a:=t] - A
(Cut)
[ttt A

then (by the other commutation cases) we can assume that the right premise of
such a (Cut) where the cut formula is atomic, is actually the conclusion of (Ax),
(LL), (~ R) or (at R) (that is, we can assume II is empty).

If the right premise of the (Cut) is derived by (LL) or (~ R), or if the predicate
relevant to its derivation is in I" or A (and is not p(ts)[a:=t]), then the conclusion
of the (Cut) can be derived directly by the rule that derived I', p(ts)[a:=t] - A.

If the right premise of the (Cut) is derived from (Ax) so that A is A, p(ts)[a:=t]
then we may permute the derivation to

H/
: (Ax)
[p(ts)a:=t'], A L, p(ts)[a:=t'] - p(ts)[a:=t"], A’ (Cut)
u
[+ p(ts)a:=t"], A’
; (~L{)
Lt ~tkEA
The twins to these, where atp(ts), is similar. O

Lemma 4.4 IfT'F A, where I' and A do not contain at or ~» and where the final
rule application is (at L) or (at R) to the formula at a, then a (shorter) derivation
can be found without this application.

Proof. By induction on the length of a cut-free derivation that I' = A. Suppose
(atL) or (at R) follows to a derivation of length 1. Since I" and A do not contain
~» the derivation must be a single application of (Ax) or (LL). In the first case
the derivation must be of one of these forms:
(Ax) (Ax)
I ata, P+ P,A or I'P+FPatt, A

(atR)

(atL)
'cA kA

where I' = IVU{P} and A = A’U{P}. This can be replaced by a single application
of (Ax). The case for (LL) is similar.

Now suppose the derivation is of length > 1. Then the rule preceding the final
application of (at L) cannot be any ~ rule (for then I' would contain ~~). Therefore
the preceeding rule must be a FOL rule. Then we permute the application of (at L)
or (at R) with the FOL rule (so the at rule applies to the premises of the FOL rule).

12

GABBAY AND (GABBAY

We can then apply the induction hypothesis. For example:

II I
I, at a,P FQ,A ...gets permuted T, at a,P FQ,A
(OR) o (atL)
T,atal P> Q,A I,PFQ,A
(at L) ————— (OR)
rrEP>Q,A r=P>Q,A

and the induction hypothesis applies to the derivation up to the application of
(atL). O

Corollary 4.5 a-logic is a conservative extension of FOL without identity.

Proof. Suppose I' - A, in the language of FOL without identity, is derivable in
a-logic. We shall argue it is also derivable in FOL without identity. We know that
I' F A can be derived in a cut-free derivation. If this derivation makes no use of the
rules for at and ~- then there is nothing to prove, otherwise our argument proceeds
by induction on the length of the derivation. If the final rule is a FOL rule then
the result follows by induction hypothesis on its premises. Given the conditions on
I and A, the only other possibility for the final rule is that it is (at L) or (atR) ,
in this case the result follows by Lemma 4.4. a

5 Models of a-logic

5.1 Semantic definitions and soundness

An a-domain D is a tuple (|D|, Ip, <p) — we may write (|D|, I, <) if D is understood
— such that:
e |D| is a set.
We call it the underlying set of D. We may write x € D for = € |D|.
* (|D|, <) is a poset on |D|.
That is, < is a transitive reflexive asymmetric binary relation on |D|.
o I C |D| is down-closed with respect to <. That is, for any x,2’ € |D|, if 2’ € T
and z < 2’ thenxz € I
A wvaluation ¢ to D is a function from the set of variable symbols A to |D| such
that ¢(a) € I for at least one a € A. Write ¢{a—=z} for the valuation such that
¢{a—ax}(b) = ¢(b) for all b other than a, and ¢{a—z}(a) = x.
We need some notation. Write |D|” for the set of n-tuples (x1, ..., zy) of elements
z; € [D| for 1 <4 < n. |D|° contains just the O-tuple (). Call a function f from |D|"
to |D| monotone when

if z; <af then f(z1,..., 24, 2n) < fT1, .. 2k, 2p).

7
A model [-] extends an a-domain D with the following information:

* For each term-former f of arity n a monotone function [f] from |D|" to |D| such
that [f](z1,...,2,) & I for all z1,...,x,.

13

GABBAY AND (GABBAY

Intuitively, the result of applying the interpretation of a term-former to some
arguments must never be the interpretation of a variable symbol. This reflects
the intuition that at ¢ is false if ¢ is not a variable symbol.

* For each predicate constant symbol p of arity (dy,...,d,) other than at and ~,
a set [p] C |D|™ such that if z; < 2/ then:
- Ifd; =1 and (z1,...,%i,...,2,) € [p] then (z1,...,2},...,2,) € [p].

- Ifd; =1 and (z1,...,2},...,2,) € [p] then (z1,...,2;,...,2,) € [p].

- Ifd; = O then (z1,...,2;,...,2y) € [p] if and only if (xy,...,2},...,2,) € [p].
Comparing these conditions with (~LJ) and (~~L7) from Figure 1 we see that
< models ~», and we make this intuition precise below.

We extend the model [-] to an interpretation of terms inductively by

[a], =<(a) [f(ts,.- ta)] = [fN([0als - - Ttnl)

as is standard.
Given a valuation ¢ and a [-] we define a notion of validity in the model (for
the valuation) as follows:

o [L]. is invalid.
e [P D Q] is valid when [P]_is invalid or [Q] is valid.
* [Va.P] is valid when [P] , ,y is valid for all 2 € D.

e For p ¢ {~,at}, [p(t1,...,ts)]. is valid when ([t1], ..., [tn])s € [p]-
b [[tl ~ tg]]g is valid when [[tg]]g < [[tl]]g-
* [att]_ is valid when [t] € I.

We write that [I']_is valid when [G] is valid for all G € T', and we extend validity
to judgements I' = A by: [I' = A]_ is valid when either

* [G]. is not valid for some G € T', or
* [D], is valid for some D € A.

Finally we write
[T = A is valid when [I" = A]_ for all valuations .

Lemmas 5.1 and 5.2 are technical results which are useful later:
Lemma 5.1 [att]_ is valid if and only if t is a variable symbol and s(t) € I.

Proof. By definition, [att]_is valid when [t]_ € I and by the conditions on [-]
and ¢, [t], cannot be in [if ¢ is a constant or a complex term (as no function symbol
is interpreted to have values in I). 0

Lemma 5.2 (i) [v[a:=t]] = [[/U]]c{w—)[t]q}'

(ii) [Pla:=t]]; is valid if and only if [P 4y y is valid.

Proof. The first part is by an easy induction on syntax. The second part is also
by an easy induction, we consider only one case:

14

GABBAY AND (GABBAY

[at (v[a:=t])], is valid if and only if [v[a:=t]]_ € I, and by part (i) this is the
case if and only if [v] (o 3 € 1-

Other cases are similar. O

Lemma 5.3 ((VL)) (i) If [Va.P]_ is valid then [Pla:=t]]..
(ii) If [T, Pla:=t] = A], is valid then [I' AVa.P = A]_.

Proof. The first part is direct from Lemma 5.2 and the definition of [Va.P] . The
second part is routine from the definition, using the first part. O

Lemma 5.4 Suppose that a ¢ t, a € G and s(b) = <'(b) for all other b € A. Then

(1) [t = (el
(ii) [G]. is valid iff [G]. is valid.

S

As an easy corollary, if a ¢ T, A and (b) = ¢'(b) for all other b € A then [I'F A]_
if and only if [T F A].

Proof. We work by induction on ¢ for (i) and then on G for (ii). We consider only
two cases:

* Thecase G = att. Suppose [att]_is valid. By Lemma 5.1 ¢ is a variable symbol
and ¢(t) € I. t = a is impossible because we assumed a & t. Therefore ¢’(t) is
valid. The result follows.

The reverse implication is similar.

e The case G = Vb.P. We can assume b is distinct from a because we equate
syntax up to a-conversion. [Vb.P]_ is valid when [P] g, .y for all z € D. The
result follows by inductive hypothesis.

O

Lemma 5.5 ((VR)) If [T - P,A] and a ¢ T, A then [I' FVa.P, A].

Proof. Fix ¢. We now reason by cases:

* Fix some G € I'. By Lemma 5.4 [G]_ is not valid if and only if [G]. is not

S

valid, for any other ¢’ such that ¢(b) = ¢’(b) for all b other than a. Therefore
[Tt Va.P,A] is valid.

* Fixsome D € A. If [D]_ is valid then by Lemma 5.4 also [I" - Va.P, A]_is valid.

* Suppose [G], is valid for all G € " and suppose [D], is not valid for all D € A.
Then [P], is valid. By Lemma 5.4 [P] ,, ,, must be valid for all z € D.
Therefore [Va.P]_ is valid and so [I" - Va.P, A]_is valid as required.

a

Lemma 5.6 ((atR),(atL)) (i) If [I' - atu,A]_ is valid and u is not a variable
symbol then [T' = A]_ is valid.

(ii) If [T,ata = A]_ is valid and [a] € I then [I' = A]_ is valid.
Proof.

(i) By Lemma 5.1 [atu] _ is not valid on any valuation ¢. The result then follows
from the definition of validity.

15

GABBAY AND (GABBAY

(ii) Since [a].
invalid for some G € T" or [D]
[TFA].

€ [it follows that [ata]_is valid. By definition, either [G]_ is

. is valid for some D € A. Again by definition,

O

Theorem 5.7 (Soundness) Suppose [-] is a model. Then if T' = A is derivable
then [T'+ A] is valid.

Proof. We work by induction on the depth of derivations.

* Most cases are immediate from the definitions (we have sketched the reasoning
in what we consider the more complex cases in lemmas above). Only rule (at L)
is not straightforward.

e The case of (VL). By part (ii) of Lemma 5.3.
e The case of (VR). By Lemma 5.5.
e The case of (atR). By Lemma 5.1.

e The case of (atL). Suppose I'yata - A is derivable where a ¢ T',A. Let d
be such that [a’] € I. By Lemma 4.1 for [a:=a'] it follows that I',ata’ = A is
derivable, and the derivation is no deeper. By inductive hypothesis [I',at a’ = A]_
is valid. The result now follows by part (ii) of Lemma 5.6.

]

5.2 Prime theories and completeness

Let T range over (possibly infinite) sets of formulae; call 7 a theory. Call T
tnconsistent when there exists some (finite) I' C 7T such that I' - is derivable.
Otherwise call T consistent. Call T maximal when:

e T is consistent.

e f ' CT and '~ P then P € T. We call T deductively closed.
e Foral P, PeT or-PeT.

If Pla:=t] € T for all ¢ then Ya.P € T.

e ata € 7T for at least one a.

Lemma 5.8 If T is mazimal then Ya.P € T if and only if Pla:=t] € T for all t.
Also =Va.P € T if and only if =Pla:=t] € T for some t.

Proof. By easy calculations using the definition of maximal set. O
Lemma 5.9 IfT is a consistent and a ¢ " then I' U{at a} is consistent.

Proof. We suppose I';at a - and we prove a contradiction. By assumption a ¢ T';
it is not hard to extend the derivation of I',at a I to a derivation of I' F Va.—at a.

16

GABBAY AND (GABBAY

We combine this using (Cut) with the following derivation

I'NataF ata

I'ata,-atat

I',ata,Va.—ata
I',Va.—at a

(atL)

to produce a derivation of I' k. This contradicts our assumption that I' is consis-
tent. O

Lemma 5.10 If I is finite and consistent then there exists a mazimal theory T
such that T C T.

Proof. Since I' is finite there are infinitely many variable symbols that do not
appear in I'. The language is countable so we enumerate its predicates P, Ps ...
We now construct a sequence I'g, I'1, ... as follows:

e I'o =T U{atb} for some b such that b ¢ I'.

e Suppose I'y,, P41 is inconsistent. Then I'y 1 =T, U{=P,41}.

e Suppose I'y,, P11 is consistent and P, is not of the form —Va.P for any P. Then
Lpi1 =T U{Ppt1}.

e Suppose I'y,, P11 is consistent and P, is of the form —Va.P for some P. Then
Iypy1 =T U{=P[a:=b]} for some b & I'),.

Note that I'y, C T, if m < n. Write T =J,,I',. By construction I' C 7. If we can

prove that 7 is maximal then we are done:

e T is consistent: Iy is consistent by Lemma 5.9. By construction ', 11 is consis-
tent if '), is, so I}, is consistent for all n > 0.
If 7 is inconsistent then it has a finite inconsistent subset. This must be
contained in some I';, and this is impossible. The result follows.

e T is deductively closed: Suppose that 7 - P. P = P, for some n and by
construction P € I'y 1.

e For every P, either P € T or =P € T: P = P, for some n. By construction
Pn S Fn+1 or _|Pn S Fn+1.

o If Pla:=s] € T for all s then Va.P € T. Suppose that Va.P ¢ T, then —=Va.P €
7. Now —Va.P = P, for some n. Therefore —=Pla:=b] € T, for some b ¢ T,
and so Pla:=b] ¢ T.

e atb € T for at least one b: By construction of T'y.

For a given set of sentences T, define [t| = {u |t~ u e T}.
Lemma 5.11 If T is mazimal then |u| C |t| if and only t ~> uw € T.

Proof. Suppose that |u| C |t|. Since 7 F u ~» u it follows that u € |u| and so
if |u| C |t| we have that u € |¢| and so ¢t ~» u. Conversely suppose ¢t ~» u € T.

17

GABBAY AND (GABBAY

Now if s € |u| then u ~» s € T and so t ~ s € T by the maximality of 7 and the
transitivity of ~» (see Theorem 2.1), and so s € |t|. Thus, |u| C |¢|. O

Lemma 5.12 IfT is consistent then there exists some model [-] and some valuation
s on [-] such that [T']_ is valid.

Proof. Suppose I' is consistent. Extend it using the construction in the proof of
Lemma 5.10 to a maximal set 7 such that ' C 7.

Define an a-domain I by:
o |D|={Jt| | tis a term}
. I|ID>| ={|t| |att € T}
o [t] <o lul when |#] C Jul.
The arity at : () and the rules for aequality entail that if at¢ and ¢ ~~ u

are derivable then so is atu. It follows that I is down-closed. Therefore D is an
a-domain.

We specify a model [-] and valuation ¢ by stipulating that:
(i) If f has arity n and |t1], ..., [tn| € |D|. Then [f](|t1], ..., [tn]) = |f(t1, ... tn)].
(i) [p] =A{(tsl,-- - [tal) | p(t1, .- t0) € T}
(i) 5(a) = lal € D,
We must verify the properties required of a model.
o If [f]1(t1]..-|tn]) € I, then |f(t1,...,tn)] € I and so at f(t1,...,t,) € T.

But this is impossible since at f(t1,...,t,) F and T is consistent. Therefore

LAYt - [tn]) & 1.
Also if |t;| < |t}] then |¢t;] C |t;| and then t; ~» ¢; € T. But since ~» has arity
(1,4) we have that

(~R)

F ot ty) N U
f(tl) 7t7,7 7t) f(tl t t) («»—) L\L)

tisti b ftr, oyt ytn) ~ ft, sty tn)

and so f(ti,...,t, ..., tn) ~ f(t1,...,t;, ..., tn) € T. Therefore

Ty lgyeeeyln e 1,...,;,...’tn)’
[F(ts st ta)[S 1t

which entails that |f(t1,... ¢, ..., tn)] < |f(t1,...,t,, ..., tn)|. Thus if |¢;] < |t}
then [f](|t1], .-, |til, s ltal) < [F1(Eals-- -5 18], - - ., |tn]) and we have shown
that [f] is monotone.

* By construction ¢ maps atoms to elements of ID. By construction there exists an
a such that ata € 7. Also by construction |ata| € I. Therefore there exists an
a such that ¢(a) € I.

* Suppose the arity of p is (d ... dy) and suppose |t;| < |t;|. By definition |¢;| C |¢/]
and by Lemma 5.11 t; ~» t; € T. There are now three cases:
- The case that d; = 1:

If ([ta], .. |til,-- -5 |tn]) € [p], then p(ty... t;, ..., tn) € T. By the following

18

GABBAY AND (GABBAY

derivation and the maximality of 7, we have that p(¢t;...,t., ..., t,) € T:

Y70

(Ax)
p(ts)|a:=ti] - p(ts)[a:=t;] [atp(ts)]
th ~ b, p(ts)[a:=t;] - p(ts)[a:=t}]

(~L1)

Therefore (|t1],...,[t], ..., |ta]) € [p]-
- The cases d; = | and d; = O are similar.

We prove by induction that [t] = |t| for any ¢:
* Thecaset =a. [a] . =¢
e The case t = f(t1,...,t,). Then

[T - Ttnd) = TFICRL - TEal) = F (s)

We prove by induction that [P]_ is valid if and only if P € 7T

(a) = |a| by construction.

* The case that P = att. [att] is valid when [t]_ € I, which happens when
|t| € I, and this happens when att € T.

e The case that P = t1 ~ t3. [ta ~ 1] is valid when [t;]_ < [t2]., which
happens when |t;| < |to|, which happens when [t1| C |t2], and by Lemma 5.11
this happens when (ty ~ t1) € T.

* The case that P = p(t1,...,t,) for some p & {at,~}. [p(t1,...,t,)], is valid
when ([t1]_,...,[ta].) € [p]. Now [t;], = |t;| for 1 < i < n, so this happens
when (|t1],...,|tn|) € [p]. By construction this happens when p(ti,...,t,) € T.

e Other cases are straightforward. For example:
[Va.P] is valid iff [P] g, is valid for all [¢]
iff [Pla:=t]]_ is valid for all ¢ (Lemma 5.2)
iff Pla:=t] € T is valid for all ¢ (induction hypothesis)
ifft Va.PeT
We conclude that [P]_ is valid for every P € T, and it follows that [I'] is valid.O
Theorem 5.13 (Completeness) If [I' - A] is valid in all models then I' = A.

Proof. a-logic is classical. Therefore I' - A when ' U {—=D : D € A} +-. It suffices
to show that if T U {-D : D € A} is consistent then there is a model [-] and
valuation ¢ such that [P]_1is valid for all P € I'U{=D : D € A}. This follows by
Lemma 5.12. O

6 Consistency and nontriviality of the axiomatisation
of the A-calculus

We build a model, in the sense of Subsection 5.1, of the theory for the untyped

A-calculus from Subsection 3.2. This illustrates an easy but non-trivial example of
an a-logic model and it suffices to prove consistency of the axioms in Figures 2, 3

19

GABBAY AND (GABBAY

and 4.
Let A be the set of untyped A-terms, generated by the grammar

q,r ==a | Aa.q | qq.

Here a ranges over variables of a-logic; it is convenient to identify these with vari-
ables of the A-calculus. We define a-conversion and ($-reduction on A-terms set as
usual [4]. Write fv(q) for the free variables of gq. For example a & fv(\a.a).

Write g[r/a] for the capture-avoiding substitution of r for a in ¢, making some
fixed but arbitrary choice about how to rename variable symbols to avoid capture.
For example (Aa.b)[a/b] = Aa’.a for some fixed but arbitrary choice of a’.

Remark 6.1 Note that our use of g[r/a] for capture-avoiding substitution in A-
terms is distinct from the (syntactic) substitution action [a:=t] of Subsection 2.2:
[¢/a] is an operation on the A-terms which we are about to use to construct a
concrete model for the theory of Figures 2 and 4; [a:=t] is an operation on a-logic
terms.

Write ¢ —4p ¢ for the relation generated by an a-conversion followed by a
B-reduction followed by a-conversion, and call this o3-reduction.

Write —7 5 for the transitive reflexive closure of —,3. That is, q —rap 4 When
either ¢ = ¢ or there exists some chain ¢o, ..., ¢,—1 such that

q' —>a5 q2 —>a5 —>a5 dn—1 —>a5 q.

Write ¢4 for the relational image of {¢'} under —} - That is,

¢ lag=1a1d —5p 4}
All of these definitions are standard [4].

Definition 6.2 Let ; be some symbol not in A and read it as error. We define an
a-domain D by:
* ID| ={qlas | g€ A} U{i}. z,y,2 will range over elements of D).
e x<ywhenzxCyorxz=y=j.
o I ={{a}|acA}U{D}.
We define a valuation ¢ by ¢(a) = {a}. We define a model [-] by:
o [M(z,9) = (Aar)lysif zNA = {a} and y = 1|4
[A](z,y) = {i} otherwise.
e z[-Jy=(qr)lap if v = qlos and y = 1 ,p.
z[-]y = {i} otherwise.
* [0](z,2,9) = (alr/alap if 2 = qlag, 2N A ={a}, and y = rlyp.
[0](z,2z,y) = {i} otherwise.
* (z,y) € [#] when xNA = {a} and y = r|,5 and a & fo(r).

6 The first author has studied different ways these definitions can be expressed. This is not the issue for
constructing the model; for our purposes it suffices to know that the relation exists.

20

GABBAY AND (GABBAY

(x,y) & [#] otherwise.

A, -, and () in the language of £ are term-formers with arities 2, 2, and 3
respectively. a-logic permits ‘silly terms’ such as A(Aa.Ab.ab).c. Standard methods
are available to exclude them; for instance a sorting system for a-logic could be
developed. On the other hand, we could even ‘embrace the silliness’, allow such
terms, and investigate their properties. All of this is future work; for our purposes
we need only include j an error value, and in Definition 6.2 we let the denotation of
a silly term such as A(Aa.Ab.ab).c be {;}. For more future work, it may be possible
to identify ; with the L of Scott domain models of the A-calculus [27]. However,
this requires a more sophisticated construction, perhaps involving nominal domain
theory [26].

We now sketch a proof that we have indeed constructed a model of £. Lem-
mas 6.3 and 6.4 are technical lemmas needed for Corollary 6.5.

Lemma 6.3 Suppose z,x’ € |D| and suppose x < x’. Then:

o If 2" = 1", for some ' then x = rl,5 for some r € &' (that is, x = rl,5 for
some 1 such that r' —p 5 7).

o If /N A ={a} then x N A = {a}.
Proof.

* Suppose z' = r'|,5 and suppose x < 2’. Note that ; ¢ 2. By definition of < we
know x C 2’. It follows that ; ¢ x and so x = r],5 for some r. It follows that
7 € ' and therefore that 1" —7 5 r.

* Suppose 2'NA = {a} and z < 2’. By construction of [D| it follows that ' = '], 5
and 1’ —>Zﬁ a. By the first part of this result z = r{,g and r! —>Zﬂ r. It is a fact
that a does not S-reduce. By confluence of A-calculus reduction it follows that
r _>Zﬁ a. The result follows.

O

Lemma 6.4 If x € |D| then precisely one of the following holds:

e xNA = {a} for some a € A.
e zNA=0.
Proof. We work by cases on possible forms for = € |[D:

* The case z = ql,g. It is a fact of A-calculus reduction that if ¢ = 5 a for some
a € A then g /37 5 b for any other b.

e The case x = {;}. Immediate.

Corollary 6.5 [A], [], and [()] are monotone.

Proof. It suffices to verify that:

o If z <2’ and y < ¢/ then [A](z,y) < [A](«/,y).

o If x <z’ and y < ¢ then [-](x,y) <[], y).

o Ifx <2/, y <y, and z <2 then [()](z,y,2) < [O](,y, 7).
21

GABBAY AND (GABBAY

We will consider only the first of these calculations, for A; the calculations for -

and () are similar. Suppose that x <2/ and y < ¢/.

By Lemma 6.4 either 2’ N A = () or z N A = {a} for some a € A. Tt is helpful,

though, to distinguish three cases:

The case that v = {;}. Then [A](2/,y") = {i}. We assumed y < /. By
construction of |D| it follows that y = {;}. Therefore [A](z,y) = {;} and the
result follows.

The case that 2’ NA = . Then [A](2/,y') = {;}. We assumed z < 2/ and so
(since the definition of < unpacks to x C z’) xNA = (). Therefore [A](z,y) = {;}
and the result follows.

The case that 2’ N A = {a} and y' =1'],5. Then [A](2',y') = (Aa.r")],5. By
part 1 of Lemma 6.3 since < 2’ it must be that z N A = {a}. By part 2 of
Lemma 6.3 since y < ¢/ it must be that y = 7lqp for some 7 such that r’ —>3B r.
By construction [A](z,y) = (Aa.r)],5. By properties of af-reduction Aa.r’ —7
Aa.r and so ([A](z,y) C [A](2/,y') and so by definition) [A](z,y) < [A](2/,y)
as required.

a

Theorem 6.6 D is an a-domain. < is a valuation. [-] is a model.

Proof. We verify all the required properties in turn. ID is an a-domain:

S

|D| is a set: This is a fact.
C is a partial order on |D|: This is also a fact.

I is down-closed: Suppose 2’ € I and z < 2’. By definition of I we know that
a2’ = {a} for some a € A. By part 1 of Lemma 6.3 we know z = 2/. It follows
that = € I.

is a valuation: By construction ¢ maps a to {a} € |D|. Also, ¢(a) € I for all

a € A, and therefore ¢(a) € I for at least one a € A.

[-] is a model:

A is a term-former with arity 2. By construction [A] is a function from |D|? to
|DJ|. Tt is a fact of A-calculus reduction that if Aa.q —>Zﬂ ¢ then ¢’ is not a variable
symbol. It follows that [A](z,y) & I always. We proved in Corollary 6.5 that
[A] is monotone.

The cases of application and substitution are similar.

Recall that # : (},{). Suppose that z < 2/, y < ¢/, and (2/,y') € [#]. We must
show that (z,y) € [#].

By construction 2’ = {a} for some a € A, y' =1'],5, and a & fu(r’). By part 1
of Lemma 6.3 since z < 2/ we know = = {a}. By part 2 of Lemma 6.3 since
y <y it must be that y = 7lqp for some r such that r’ —rap T It is a fact of the
A-calculus that a & fu(r). The result follows.

O

Theorem 6.7 The construction above yields a model of L.

Proof. We verify that the axioms given in in turn. We consider only two cases.

22

GABBAY AND (GABBAY

()
We must show that if (z,y) € [#] then
e x={a} el

e for all {b} € I such that b # a it is the case that y C [()](y, {a}, {b}).
Suppose that (z,y) € [#]. By definition x = {a}, so x € I. Also by definition
y = rlog and a ¢ fo(r). By defimition [(](rlug, {0}, alyg) = (rla/al)las.
But, since a & fo(r), rlg¢/a] = r. And so y = rl,s C rlg/a])l,s. The result
follows.

(—comm)
Suppose that xo = {as} € I, (z1,22) € [#] and (z1,y2) € [#]. We must show
that

* [O1(T01(z 22, 2) 20, [0 w22, 92)) € IOT (L0121, 30), 22,2
We may suppose that y1 = 1,5, y2 = r2d4p and z = ql,5. It follows that
x1 = {a1} € I and that a &€ fu(rz) . It also follows that a; & fv(az) and, since
as is just a variable, this entails that a; # as.

Now [(](z, 22, y2) = glra/azllap and [O](y1, 22, y2) = r1lr2/asllag by defi-
nition. So [()](ar2/azllag, 71, 71[r2/a2llag) = q[r2/az] [r1lr2/as)/a1|Las-

Similarly it follows that [(]([01(z 21, 1),2,52) = alr1 /a][ra/as] o
But it is a fact of the A-calculus that if a; # a2 and a & fv(re) that
Q[T‘l/al][?"2/a2] = Q[T2/a2] [7"1[7“2/612]/(11]-

The other axioms in Figures 2, 3 and 4 can be verified similarly. a

7 Conclusions

a-logic is a classical first-order logic with a two-valued model theory, one of many
[5,13]. The twist to the story is that at can identify variables, and accordingly
truth-values are given also to open predicates.

In the semantics, predicates are sets of (tuples of) elements of the domain. at
is a unary predicate. Atoms are simply a subset of the underlying domain; those in
[at] which is the interpretation of at in the domain. Elements of [at] are special;
they cannot be in the image of the interpretation of any term-formers.

We believe that a-logic could provide a logical semantics for isvar in PROLOG,
as used for example in practical programming in CIAO PROLOG [9]. isvar is a
non-logical predicate which is true when its argument has not yet been unified with a
concrete value — that is, when it is a variable. This is used exactly as we have used it
in this paper, to master shallow embeddings into CIAO of languages with variables.
at and isvar appear to be compatible but problems arise interpreting PROLOG
conjunction, which ceases to be commutative in the presence of isvar. This is a
known issue which we are attempting to solve by using a modified translation of
CIAO conjunction which is will be the topic of a future paper.

A previous paper considered a variant of a-logic with equality [15]. There, in
order to axiomatise substitution we had to introduce a (in the authors’ opinion) ad
hoc notion which we called ‘essentially a term’. In this paper we take a different path
and introduce a directed equality ~» — the arrow in the title of this paper. This
solves the issues we encountered in [15], arguably in more elegant way which seems to

23

GABBAY AND (GABBAY

benefit the resulting theory and axioms. In particular, our principal axiomatisations
(of the A-calculus and of substitution) are improved.

It is relevant how conveniently a-logic can be implemented in a theorem-prover
such as Isabelle [21]. We do not know.

~ gives a-logic a flavour of a ‘logical theory of rewriting’.” Rewriting itself is
traditionally intensional on the syntax of terms (we look at a term’s syntax to decide
whether to rewrite), or completely abstract (we just take any relation on a set, but
the only properties of its elements are the relation so elements are closed, in the
sense that instantiation is absent) [3,28]. In some sense at provides just enough to
give a point of contact between these two worlds and it may be possible to make
this idea useful for the theory of rewriting.

How else can the A-calculus (and friends) be modelled in a formal system and
how does a-logic relate to them?

We can use a higher-order system to begin with (build the system as an extension
of a A-calculus). The A-calculus cannot recognise a variable symbol as such, so to
use it to model the A-calculus requires deep embedding which model variables by
closed terms (in essence, you have to write a Turing machine).

First-order logic also cannot recognise a variable symbol. We can take a two-level
hierarchy with object-level variables modelled by constants. We cannot quantify
over constants so a hallmark of such approaches is an infinity of axioms, one for each
constant (the a-logic axiomatisations look similar, but are finite). This approach is
followed for example by Cylindric Algebras [8] (which may assume only finitely many
variable symbols so as to obtain a finite theory), by Salibra’s Lambda Abstraction
Algebras [24], and by some treatments of Structural Operational Semantics (SOS)
[1], see for example Bernstein’s SOS axiomatisations of the m-calculus, the lazy
A-calculus, and CHOCS [6].

We can do away with variables entirely, for example using Boehm trees, Scott
domains, or combinators [4]. The translations are only for closed terms (hence, not
compositional) and combinators may suffer exponential blow-up [7]. This is a bit
off-topic for us, because we are interested not just in a ‘naked denotation’ but also
in the formal system it is constructed in.

We can suppose a two-level hierarchy of variables and meta-variables and as-
sume [-reduction for the former; computation/reasoning is by instantiation of meta-
variables following by reduction. One of several examples of this style is Combina-
tory Reduction Systems (CRS). Note that in CRS meta-variables vary over closed
elements — the higher-order elements are used to feed arguments to where they are
used. In a-logic unknowns may be substituted for open terms. So for example a#b
states that (whatever b is) it should not depend on a. This is not expressible in a
CRS. Being a variable or meta-variable is an intensional property in CRS, whereas
in a-logic the difference is expressed by at and can be mixed with implication and
the rest of the logic. Finally, in CRS S-reduction is built-in. Although we certainly
concentrate on substitutions and the A-calculus in this paper, other theories are
possible so a-logic is probably more flexible.

7 To our surprise, we could find no reference in the literature for a logic-based-on a transitive reflexive
not-necessarily-symmetric congruence — that is, for a logic of rewriting. We would be happy to hear of
such a reference. Rewriting Logic [19] seems different, informally treating terms as formulae.

24

GABBAY AND (GABBAY

Nominal logic [22] has a notion of atom but keeps this separate from the notion
of variable; this is because nominal logic was designed for reasoning on syntax — in
our terminology, reasoning on a deep embedding where there is a clear distinction
between variable symbols of the object-level language, called atoms because they
behave like atomic entities, and variables of the meta-level language which range
over unknown elements of the domain. A shallow embedding of (for example) the
A-calculus in nominal logic is not possible. We also believe, but have not proved,
that a-logic is consistent with arbitrary choice. Nominal logic is not [22], so a-logic
may have some interesting technical advantages.

a-logic may be closer to Miller and Tiu’s logic of Generic Judgements (GJ) [20],
where ‘being a variable symbol’ is managed by scoping for a dedicated quantifier
V instead of a dedicated predicate at. GJ is significantly different in being higher-
order and having a ‘definitional’ equality [25] suited more to logic-programming
than model theory; we suspect it is unsuited for our applications.

Kit Fine’s ‘Reasoning with arbitrary objects’ [12] axiomatises dependence be-
tween elements. Perhaps our semantics, which contain variables, may be related.

References
[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In Handbook of Process
Algebra. Elsevier, 1999.

[2] A. Azurat and I.S.W.B. Prasetya. A survey on embedding programming logics in a theorem prover.
Technical Report 7, Institute of information and computing sciences, Utrecht University, 2002.

[3] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, Great
Britain, 1998.

[4] H.P. Barendregt. The Lambda Calculus: its Syntaz and Semantics (revised ed.). North-Holland, 1984.
[5] John Bell and Moshé Machover. A course in mathematical logic. North-Holland, 1977.

[6] Karen L. Bernstein. A congruence theorem for structured operational semantics of higher-order
languages. In Logic in Computer Science, pages 153-164, 1998.

[7] Martin W. Bunder. Some improvements to Turner’s algorithm for bracket abstraction. J. Symb. Log.,
55(2):656—-669, 1990.

[8] S. Burris and H. Sankappanavar. A Course in Universal Algebra. Springer, 1981.

[9] CIAO. CIAO Prolog.
www.clip.dia.fi.upm.es/Software/Ciao/ciao_html/ciao_toc.html.

[10] Marcel Crabbé. On the notion of substitution. Logic Journal of the IGPL, 12(2):111-124, 2004.

[11] Maribel Ferndndez and Murdoch J. Gabbay. Nominal rewriting. Information and Computation,
205:917-965, 2007.

[12] Kit Fine. Reasoning with Arbitrary Objects. Blackwell, 1985.

[13] Dov Gabbay and Franz Giinthner, editors. Handbook of philosophical logic. Number 166 in Synthese
Library. D.Reidel Publishing company, 1986.

[14] Murdoch J. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. 19th IEEE
Symposium on Logic in Computer Science (LICS 2004), pages 139-148. IEEE Computer Society, 2004.

[15] Murdoch J. Gabbay and Michael J. Gabbay. a-logic. In We Will Show Them: Essays in Honour of
Dov Gabbay, volume 1. College Publications, 2005.

[16] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal algebra. In
ICTAC’2006: 3rd International Colloguium on Theoretical Aspects of Computing, volume 4281 of
LNCS, pages 198-212, 2006.

[17] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal algebra. Formal
Aspects of Computing, 2008. Available online.

25

GABBAY AND (GABBAY

(18] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13(3-5):341-363, 2002.

[19] Narciso Mart{-Oliet and José Meseguer. Rewriting logic: roadmap and bibliography. Theor. Comput.
Sci., 285(2):121-154, 2002.

[20] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An extended abstract. In Proc. of
LICS 2003, pages 118-127. IEEE, 2003.

[21] Larry Paulson. The Isabelle reference manual. Cambridge University Computer Laboratory, 2001.

[22] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2):165-193, 2003.

[23] Antonino Salibra. On the algebraic models of lambda calculus. Theoretical Computer Science,
249(1):197-240, 2000.

[24] Antonino Salibra. Lambda calculus: models and theories. In AMiLP-2003, number 21 in TWLT
Proceedings, pages 39-54, 2003.

[25] Peter Schroeder-Heister. Definitional reflection and the completion. In Extensions of Logic
Programming, volume 798 of Springer Lecture Notes in Artificial Intelligence, pages 333—-347, 1993.

[26] Mark R. Shinwell and Andrew M. Pitts. On a monadic semantics for freshness. Theoretical Computer
Science, 342(1):28-55, 2005.

[27] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, Cambridge, MA, USA, 1977.

(28] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije
Universiteit, Amsterdam, 1994.

[29] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shallow versus deep embedding.
In TPHOLs, volume 3223 of LNCS, pages 305-320. Springer, 2004.

Acknowledgements. We acknowledge the support of British Academy grant PDF /2006/509

and grant RYC-2006-002131 at the Polytechnic University of Madrid.

26

	Introduction
	a-logic
	The aim of a-logic
	Terms, directions, predicates
	Contexts and judgements
	Comments on atoms

	Expressivity
	Substitution
	-calculus

	Cut-elimination
	Models of a-logic
	Semantic definitions and soundness
	Prime theories and completeness

	Consistency and nontriviality of the axiomatisation of the -calculus
	Conclusions
	References

